L Boundedness of Commutators of Riesz Transforms Associated to Schrödinger Operator

نویسندگان

  • Zihua Guo
  • Pengtao Li
  • Lizhong Peng
چکیده

Abstract: In this paper we consider Lp boundedness of some commutators of Riesz transforms associated to Schrödinger operator P = −∆+ V (x) on Rn, n ≥ 3. We assume that V (x) is non-zero, nonnegative, and belongs to Bq for some q ≥ n/2. Let T1 = (−∆ + V ) −1V, T2 = (−∆ + V )−1/2V 1/2 and T3 = (−∆+ V ) −1/2∇. We obtain that [b, Tj ] (j = 1, 2, 3) are bounded operators on Lp(Rn) when p ranges in a interval, where b ∈ BMO(Rn). Note that the kernel of Tj (j = 1, 2, 3) has no smoothness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endpoint Estimates for Commutators of Riesz Transforms Associated with Schrödinger Operators

In this paper, we discuss the H1 L -boundedness of commutators of Riesz transforms associated with the Schrödinger operator L =−4+ V , where H1 L (R n) is the Hardy space associated with L . We assume that V (x) is a nonzero, nonnegative potential which belongs to Bq for some q > n/2. Let T1 = V (x)(−4+ V )−1, T2 = V 1/2(−4+ V )−1/2 and T3 =∇(−4+ V )−1/2. We prove that, for b ∈ BMO(Rn), the com...

متن کامل

Commutators with Lipschitz Functions and Nonintegral Operators

Let T be a singular nonintegral operator; that is, it does not have an integral representation by a kernel with size estimates, even rough. In this paper, we consider the boundedness of commutators with T and Lipschitz functions. Applications include spectral multipliers of self-adjoint, positive operators, Riesz transforms of second-order divergence form operators, and fractional power of elli...

متن کامل

On Fundamental Solutions of Generalized Schrödinger Operators

We consider the generalized Schrr odinger operator ? + where is a nonnegative Radon measure in R n , n 3. Assuming that satisses certain scale-invariant Kato condition and doubling condition, we establish the following bounds for the fundamental solution of ? + in R n : where d(x; y;) is the distance function for the modiied Agmon metric m(x;)dx 2 associated with. We also study the boundedness ...

متن کامل

Boundedness for Riesz transform associated with Schrödinger operators and its commutator on weighted Morrey spaces related to certain nonnegative potentials

*Correspondence: [email protected] School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China Abstract Let L = – + V be a Schrödinger operator, where is the Laplacian on Rn and the nonnegative potential V belongs to the reverse Hölder class Bq for q≥ n/2. The Riesz transform associated with the operator L is denoted by T =∇(– + V)– 2 and the dual Ri...

متن کامل

Riesz transforms through reverse Hölder and Poincaré inequalities

We study the boundedness of Riesz transforms in L for p > 2 on a doubling metric measure space endowed with a gradient operator and an injective, ω-accretive operator L satisfying Davies-Gaffney estimates. If L is non-negative self-adjoint, we show that under a reverse Hölder inequality, the Riesz transform is always bounded on L for p in some interval [2, 2 + ε), and that L gradient estimates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008